MicroTurbines

Capstone Development Efforts

Matt Stewart
Capstone Engineering

IGTI - Atlanta , GA - June 2003

Agenda

- Overview of Capstone Microturbine
- CHP development
- 200 kW Microturbine DOE funded development
- Planned products through collaboration with UTC Power

What is a microturbine and what does it do?

- A microturbine is a turbine engine-generator, typically sized 250 kW or less
- Microturbines can efficiently supplement energy use at the point of use

An array of 8 kerosene-fueled microturbine at a Japan hospital

- Creates electricity and heat
 - Similar to installing a furnace, boiler, backup genset or chiller
- About 3,000 microturbine have been shipped worldwide

What's in it for the customer?

- Reduce your facility's energy costs
 - Create energy onsite whenever economically advantageous
 - Minimize demand and other utility charges
- Support energy conservation efforts
- Reduce environmental impact
 - Offset higher emission utility power
 - Reduce flare emissions
- Avoid power outages
 - Eliminate production and data losses
 - Provide power during emergencies
 - Isolate priority loads in problem areas
- Solve facility power problems
 - Produce power where needed
 - Create power at remote sites

Microturbines fueled by sewage gas

Applications: Cogeneration ("CHP/CCHP")

Examples of high-efficiency CHP (combined heating and power) and CCHP (combined chilling, heating and power)

✓ Direct exhaust

✓ Hot water

✓ Cooling

Clockwise from top: microturbine exhaust directly fires a 20-ton chiller at Univ. of MD; exhaust from two microturbine fueled by oil flare gas direct heats oil/water separator; microturbine provide power and water/building heating at a YMCA.

© 2003 Capstone Turbine Corporation • www.microturbine.com

Applications: Oilfield flare gas reduction

Free/low-cost onsite fuel

- Generate onsite power from onsite waste or low-value gas
- Avoid electrification costs in remote areas
- Offset power bills in wired areas
- Destroy odors, methane and non-methane compounds
- Positive environmental impact
 - Avoid emissions penalty charges
 - Avoid emission-credit purchases

installations

onshore and offshore

Applications: Renewable Biogas

Several bio-fueled microturbine installations

Generate power and heat from flare gas at sewage plants, landfills, livestock farms, food waste, etc.

Applications: Standby, peak or prime power

Ensure power certainty in remote areas and in critical business operations

Capstone's New Integrated C60 CHP System

Topics

- Overview of Features / Benefits
- Design Concept
- Heat Recovery Modes

Features and Benefits

Feature	Benefit
Top Mount Heat Recovery Module	Requires Minimum Footprint
Two Heat Recovery Modes:	Useful for Many Different Heat
1. Thermal Priority	Recovery Applications
2. Electric Priority with Thermal Track	
Analog Inputs for Electric and Thermal	Simple Interface with Building
Control	or Process Control
Water Temperature, Status, and	Eliminates Separate
Setpoints read using Capstone C60	Temperature Metering and
Display and CRMS	Provides Single User Interface
Entire CHP System is UL and CSA	Facilitates local permitting
Listed	

Heat Recovery Module Concept

Heat Recovery Module Elements

Diverter in Bypass

Diverter In Heat Recovery

Turbine Exhaust Out

Modes of Heat Recovery

Mode	Description
Thermal Priority	Follows requested heat recovery. Electric power is automatically adjusted to provide thermal.
Electric Priority with Thermal Tracking	Electric power is controlled. The diverter is adjusted to try to maintain the measured water outlet temperature.

C200 Microturbine Development

- Topics
 - System Characteristics
 - Engine and Recuperator Development
 - Testing
- Support by funding for the DOE Advanced Microturbine Program
 - Goals: 40% efficiency, \$500/kW, 7 ppm NOx, multiple fuels, 45k hour life

C200 System Characteristics

- Leverage experience from past microturbine development
- Annular recuperator
- Annular low emission combustion system
- IGBT based power electronics

C200 Engine

- High speed air-cooled generator
- Single stage centrifugal compressor
- Single stage radial inflow turbine
- Air bearings
- Single shaft

Expected Performance

Rated Power	200 kW
Net Efficiency (HP-ISO)	34-35%
TET	1185 °F (640 °C)
Pressure Ratio	4:1
Emissions	Meets CA 2003
Overhaul life	40,000 hours

Development Rigs

- Used to develop components
- Reduces development risk
- Bearings and rotordynamic
- Compressor
- Combustor

C200 Recuperator Development

- Internally designed heat transfer surfaces and mechanical configuration
- Meets effectiveness and pressure drop requirements
- Mechanical design focused on manufacturability (few parts, superior welding geometry)
- Significant CFD to optimize performance
- Rig testing of full size segments to characterize performance and manufacturing
- First core produced 11/02

Engine Testing

- First engine operation
 9/02 (simple cycle)
- First recuperated engine operation 12/02
- Performance of system on target
- Engine endurance testing initiated
- NOx emissions on target

Expected Efforts

- Complete engine endurance testing
- System integration
- Product release testing
- Beta testing
- Commercial release 2004

UTC and Capstone working together

- UTC and Capstone have entered into a strategic alliance
- UTC Power will distribute Capstone products
- UTC
 - Strong established sales and service organization
 - Integrated applications that leverage UTC's expertise in CHP and cooling
- Capstone
 - · Leader in microturbine and distributed generation

UTC POWER MICROTURBINE Gas Turbine Engine

UTC MICROTURBINE

Applications – Integrated Systems

Electric Energy Requirements

Heat & Power Solution 60kW – 1MW+

Chiller/Heater Solution 240kW – 1MW+

Power & Heat Solution 300kW – 1MW+

UTC CHILLER/HEATER SOLUTION

Provides:

- ~ 240 kW Electrical Power
- ~ 118 tons of chilled water

~ 270 kW Hot Water up to 175° F

Double-effect chiller/heater

Allows year-round benefits

No fluorocarbons

contributes to NY State tax credit

Ideal for buildings with chilled water systems:

- High rise apartments
- Office Buildings
- Hospitals
- Hotels

UTC POWER & HEAT SOLUTION

Provides:

- ~ 300 kW Electrical Power
- ~ 170 kW Hot Water up to 220° F

Ideal for high electric to thermal load buildings:

- Office
- Retail
- Government
- Manufacturing

